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Notation

Let K be a local field, complete w.r.t. the valuation vk : K* — Z. Define
Ok ={x € K:vk(x) >0}
Pk ={x € K: vk(x) > 0}.

Assume that k = Ok /Pk is a finite field of characteristic p.

If char(K) = 0 then K is a finite extension of Q.

If char(K) = p then K = k((t)).

Let mx be a uniformizer for K. Then vk (nk) = 1 and Px = mxOk.

Let L/K be a finite separable extension. Then L is a local field, and vk
extends to a valuation on L, which we also denote by vk.

Let e,/ = vi(mk) denote the ramification index of L/K. Then

(L) = .7
€L/K

Say the extension L/K is unramified if e, /x = 1; say L/K is totally
ramified if e/ = [L : K].



Local class field theory

Let K% /K be a separable closure of K and let K?/K be the largest
subextension of K*P /K which is Galois with abelian Galois group.

Then there is a continuous one-to-one homomorphism
wk KX — Gal(K?*/K)

with dense image, known as the reciprocity map.

Let L/K be a finite subextension of K?°/K. Then wk induces an
isomorphism

WL/K : KX/NL/K(LX) — GaI(L/K)

Furthermore, L/K > Ny k(L*) gives a one-to-one correspondence

between finite subextensions L/K of K?°/K and closed subgroups of K*
with finite index.



Filtrations and class field theory

K has a natural filtration by closed subgroups
KXDO,X<3U§(1)DUE<2)D---,

where U,(<") = 1+ Pg. For notational convenience we set U,(<0) = Og.

Let L/K be a finite subextension of K#/K and set G = Gal(L/K). For
n>0let G = wL/K(U,(g)). Then we get a filtration

GH GO 56 5c?@ ...

of G which coincides with the “upper ramification filtration".

What this means is the following: Let ¢ € G(©) with o # id;, and let n be
maximum such that o € G("). If n is small then o(7,) is far from
while if n is large then o(m;) is close to 7.



Witt's theorem
Let K be a local field of characteristic p.
Theorem (Witt [Wi36])

Let G be a finite p-group and let N < G. Set G = G/N and let L/K be a
G-extension. Then there exists an extension M/L such that M/K is Galois
and there is an isomorphism of exact sequences

1—— Gal(M/L) —— Gal(M/K) — Gal(L/K) — 1

| | H

l1—— N —_— G —_— G — 1.

Let K[p]/K be the compositum of all the finite Galois subextensions of
Gal(K*P /K) whose Galois groups are p-groups. Then K[p]/K is the
largest Galois subextension of K*P /K whose Galois group is a pro-p group.
Corollary

Gal(K[p]/K) is a free pro-p group.




A subextension of K[p]/K

Let K(p)/K be the largest Galois subextension of K[p]/K such that

e Gal(K(p)/K) has nilpotence class < p.

e Gal(K(p)/K) has exponent p.
Then Gal(K(p)/K) is free in the category of pro-p groups with nilpotence
class < p and exponent dividing p.

In [Ab95] and [Ab21] Abrashkin gave explicit descriptions of the
ramification filtration of Gal(K(p)/K).



Higher ramification theory

Let K be a local field and let L/K be a finite Galois subextension of
K*P /K. Let G = Gal(L/K), let Ly/K be the maximal unramified
subextension of L/K, and set Gy = Gal(L/Lp). For nonnegative real v
define

G, ={o€Gy:v(o(m)—m)>v+1}.

Say G, is the vth lower ramification subgroup of G.

We have the following:
e G, <G.
o If 0 <w < vthen G, < G,.
e G, = {id,} for all sufficiently large v.

o Let M/K be a subextension of L/K and set H = Gal(L/M). Then
H, =HNG,.

Say ¢ > 0 is a lower ramification break of L/K if Gy S Gy for all € > 0.
This holds if and only if there is 0 € G such that v, (o(7) — 7 ) =+ 1.



The upper numbering for ramification groups

Define the Hasse-Herbrand function ¢, /i : R>9 — Rx>0 by

1 X
br/k(x) = [L:Lo]/o |Gt| dt.

Then ¢k is a bijection, so we can define 1, /i : R>o — R>g by
Yk = ¢Z/1K-

For y > 0set G = GwL/K(y)' Say GY is the yth upper ramification
subgroup of G.

Say u > 0 is an upper ramification break of L/K if GYT¢ < GY for all

€ > 0. This holds if and only if ¥, /i (u) is a lower ramification break of
L/K.



The upper numbering and quotients of Galois groups
Let M/K be a Galois subextension of L/K and set H = Gal(L/M); then
Gal(M/K) = G/H. We have the following:

® PL/k = Pm/K © PL/m

® Yk =Y%rmoYm/k

e (G/H)Y =GYH/H
Hence the upper numbering on ramification subgroups is compatible with
quotient groups and subextensions. In particular, if u is an upper

ramification break of M/K then u is also an upper ramification break of
L/K.

Let F/K be an infinite Galois subextension of K*?/K. Then there are
finite Galois subextensions F,/K of F/K such that F; C F, C --- and

F:Unzl Fn.

Set G = Gal(F/K) and H(n) = Gal(F/F,) for n > 1. We can define an
upper ramification filtration on G by setting

6 lim (G/H(m)"
for y > 0.



An example
Let K = Q2(Ca); then mx = (4 — 1 is a uniformizer for K. Let m; = 7r,1</4
and set L = K(m). Then 7, is a uniformizer for L.

L/K is a cyclic extension of degree 4, with Gal(L/K) = (o) satisfying
0'(7'('[_) = C47TL = (1 +7TK)7TL — 7TL(1 —|—7Tﬁ)

o?(m1) = (1 + 7k )?mL = 7 (1 + 75 + 27}
o3(r) =

( (1 + 7k)*mL = (14 37] + 378 + 712).

Hence VL(O'(’]TL) — 7TL) = VL(U3(7TL) — TFL) =5 and VL(U2(7TL) — 7TL) =0.
Therefore

(o) (0<x<4) () (0<x<4)
Ge=1¢(0?) (4<x<38) G =<(0?) (4<x<6)
{idL} (8 < X). {idL} (6 < X).

Thus L/K has lower ramification breaks 4, 8, and upper breaks 4, 6.



Hasse-Herbrand functions for L/K

(6,8)

(4,4) | (4,4)

y = br/k(x) y = Yr/k(x)



Artin-Schreier extensions

Let K = k((t)) be a local field of characteristic p, and let r € K satisfy
vk(r) = —b < 0 with p 1 b.

Let o € K*P be a root of g(X) = XP — X — r and set L = K(«). Then by
Artin-Schreier theory L/K is a cyclic extension of degree p, and there is a
generator o for Gal(L/K) such that o(a) = a+ 1.

Since pvy(a) = vi(aP) = vi(r) the extension L/K is totally ramified.
Since vi(a) = —b and p 1 b it follows that b is the unique lower
ramification break of L/K. Hence b is also the unique upper ramification
break of L/K.

If vik(r) < 0 but p | vik(r) then XP — X — r may or may not be irreducible.
Suppose XP — X — r is irreducible and let L be generated over K by a root
of XP — X — r. Then the method described above is not sufficient to
determine the ramification break u of L/K, but we do have u < —vk(r).



Filtered unipotent groups over I,

Let G be an algebraic group defined over F,. Assume further that there
are polynomials

Di € IE‘P[)<17 s 7Xi717 Y17 R \/i—l]
such that the group operation is given by
X1 Y1 X1+ Y1
5 = Xg Yz X2 + Y2 + D2
X*xY :

= . % i =
Xn Yn Xn + Yn + Dn
We say that G is a filtered unipotent group over IFp,.

Let ,B € G(K) = K". We wish to consider the system of equations
o(X ) 6 * X, where ¢ acts as the p-Frobenius on coordinates.



Extensions associated to algebraic groups
Suppose X € G(K*®P) = (K%)" is a solution to ¢(X) = 3 X. Then
x —x1 = B1, and for 2 < i < n we have x” — x; = 3; + dj, where

di = Di(B1, ..., Bi—1,x1, -, Xi—1).

It follows that the system gb()?) = 5* X has p" distinct solutions in
(K*P)". Set L = K(x1,...,%n). Then for ¢ € G(F,) we have

G(% %) = ¢(X) ¥ $(€) = (FxX) x € = f# (X €).
Hence X * € is also a solution to ¢(X) = 3 % X. Since |G(F,)| = p" the p”
distinct solutions to ¢(X) = 3 * X are given by {¥*€: 2 € G(Fp)}. Since
X % € € G(L) it follows that L/K is Galois.
For o € Gal(L/K) let ¢, be the unique element of G(IF,) such that

0(X) = X % C;. The map o — ¢, gives a one-to-one homomorphism from
Gal(L/K) into G(FFp).

Therefore X determines a homomorphism 65 : Gal(K**? /K) — G(IF,), with
0z(0) = ¢C,.



Classifying Galois representations
Let % and ¥ be solutions to ¢(X) = 3 X. Then there is d € G(Fp) such
that ¥ = X+ d. Hence for o € Gal(K/K) we have

Fx0y(0)=0a(y)=o(Xxd) =X x0z(c)xd =7+ d L 0g(c) x d

Therefore 0y(0) = d~1 % 0z(c) * d. It follows that 3 determines a
conjugacy class of homomorphisms from GaI(KseP/K) to G(IFp).

Let & € G(K) and set f=¢@xprat Ifx is a solution to
¢(X) = F* X then Z:= @ * X is a solution to ¢(X) = ' X. It follows
that 0z = 6x.

Define an equivalence relation on G(K) by 8 ~ /' if there is @ € G(K)
such that ' = ¢(@) * f* @=L, Then we have

Theorem (Galois classification theorem)

Let G be a filtered unipotent group over F,. Then there is a one-to-one
correspondence between equivalence classes [5] of elements of G(K) and
conjugacy classes of homomorphisms from Gal(K*®P /K) to G(F,), which
maps [5] to the conjugacy class of 65 for any X such that ¢(X) = 5* X.




Witt vectors

Let W, denote the p-Witt vectors of length n. Then the Witt vector
addition operation & makes W, an n-dimensional filtered unipotent group
over [,

Let 3,3 € Wo(K). Then 5 ~ 3 if and only if there is & € W,(K) such
that ' = ¢(@) ® f O a.

Thus there is a one-to-one correspondence between equivalence classes [5]
with 8 € W,(K) and homomorphisms

0 : Gal(K*P/K) — W,(F,) = Z,/p"Z.

In particular, by taking n = 1 we recover Artin-Schreier theory.



The Heisenberg group

Let p > 2. The Heisenberg group G is isomorphic to G(F,), where G is
the algebraic group over F,, whose K*®P-points are

1 C1 C3
GK*P)={ 10 1 o|:ceK*r},
0 0 1

with the operation of matrix multiplication. Then G is a 3-dimensional
filtered unipotent group over F,.



The Heisenberg group . ..

Let 5 = (1, B2, B3) € G(K) and let X satisfy ¢(X) = 5 % X. Since

1 B B3| |1 x1 x3 1 fr+x1 B3+x3+ Pixe
0 1 B |0 1 x| =10 1 B2 + xo ;
0O 0 1 0 0 1 0 0 1

we get
B x X = (P14 x1, 2 + x2, B3 + x3 + Six2).

It follows that ¢(X) = § % X if and only if the entries of X = (xq, x2, x3)

satisfy

X1_X1 B1
P —xo =P

xt — x3 = B3+ Pixo.

X



Filtered pro-unipotent groups

A filtered pro-unipotent group G over F, is given by a sequence of
polynomials

D € Fpl X1, ..., Xie1, i,y Yid]
such that for each n >1

X1 Y1 X1+ Y1
. . X5 Ys Xo+ Yo+ Do
X *n Y — . *n . - .

Xn Yn Xn + Yn + Dn

defines a filtered unipotent group over Fp.

The operations *, for n > 1 combine to give a group operation on G
which we denote by .



Filtered pro-unipotent groups and Galois representations

Let (G, *) be a filtered pro-unipotent group and let
B =(B1,B2,...) € G(K). Then there exists X = (x1, X2, ...) € G(K*P)
such that ¢(X) = f*X. Set L = K(x1,x2,...); then L is independent of

the choice of X.

For o € Gal(L/K) there is unique ¢, € G(Fp) such that o(X) = X * C,.
The map 65 : Gal(K*P/K) — G(IF,) defined by 63(c) = ¢, induces a
one-to-one homomorphism from Gal(L/K) into G(FF).

As in the finite-dimensional setting, 5 determines a conjugacy class of
homomorphisms from Gal(K*®*/K) to G(Fp).

Define an equivalence relation on G(K) by 3 ~ ' if there is @ € G(K)
such that 3 = ¢(&) * S+ L.

The Galois classification theorem applies here: There is a one-to-one
correspondence between equivalence classes [3] of elements of G(K) and
conjugacy classes of homomorphisms from Gal(K**?/K) to G(FF,) which
maps [5] to the conjugacy class of 65 for any X such that ¢(X) = 5* X.



Witt vectors again

Let W denote the full ring of p-Witt vectors. Then (W, ®) is a filtered
pro-unipotent group over F,.

Let 3,5 € W(K). Then 3 ~ ' if and only if there is &@ € W(K) such
that ' = ¢(@)® O a.

Thus there is a one-to-one correspondence between equivalence classes
(8], with 8 € W(K), and homomorphisms

0 : Gal(K**P /K) — W(F,) = Z,.



Lie algebras and p-groups

Let £ be a Lie algebra over F,, which is nilpotent of class ¢ < p.

The Baker-Campbell-Hausdorff formula defines a group operation on L.
This operation is expressed in terms of the Lie algebra operations 4+ and

[, ]
X*y:X+y+%'[XaY]+%'([X7[X>y]]_[y7[X7Y]])+'” :

Since L is nilpotent of class ¢ < p, the Baker-Campbell-Hausdorff formula
for £ has only finitely many terms. The coefficients are rational numbers
whose denominators are not divisible by p.

The operation * makes £ a group with exponent p and nilpotence class c.

Let 1 < d < p. This construction defines an equivalence between the
category of Lie algebras over IF, with nilpotence class < d and the category
of groups G with nilpotence class < d such that gP =1 for all g € G.



Lie algebras and filtered (pro-)unipotent groups
Let £ be a finite Lie algebra over [F, with nilpotence class ¢ < p. Then
L ®p, K*% is a Lie algebra over K*%, also with nilpotence class c.

Let * be the operation on £ ®p, K defined by the
Baker-Campbell-Hausdorff formula and set G = (£ ®p, K%, *). Then
G(Fp) = (£, %).

Since x : G x G — G is is a polynomial map, by choosing an appropriate
[Fp-basis for £ we can make G a filtered unipotent group.

Now suppose that £ is an inverse limit of a sequence L1, L5, ... of Lie
algebras over IF, such that dimp,(£,) = n. In this case, the choice of an
appropriate topological F,-basis for £ makes G a filtered unipotent group,
with G(Fp) = (£, *).

In either case we can use the Galois classification theorem to determine
the conjugacy classes of Galois representations

0 : Gal(K*P/K) — G(F,).

in terms of equivalence classes of elements of G(K).
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