Abrashkin's work on the higher ramification filtration Part 1: Background

> Kevin Keating Department of Mathematics University of Florida

> > May 30, 2024

Notation

Let K be a local field, complete w.r.t. the valuation $v_K : K^{\times} \twoheadrightarrow \mathbb{Z}$. Define

$$\mathcal{O}_{K} = \{ x \in K : v_{K}(x) \ge 0 \}$$
$$\mathcal{P}_{K} = \{ x \in K : v_{K}(x) > 0 \}.$$

Assume that $k = \mathcal{O}_K / \mathcal{P}_K$ is a finite field of characteristic p.

If char(K) = 0 then K is a finite extension of \mathbb{Q}_p . If char(K) = p then $K \cong k((t))$.

Let $\pi_{\mathcal{K}}$ be a uniformizer for \mathcal{K} . Then $v_{\mathcal{K}}(\pi_{\mathcal{K}}) = 1$ and $\mathcal{P}_{\mathcal{K}} = \pi_{\mathcal{K}}\mathcal{O}_{\mathcal{K}}$.

Let L/K be a finite separable extension. Then L is a local field, and v_K extends to a valuation on L, which we also denote by v_K .

Let $e_{L/K} = v_L(\pi_K)$ denote the ramification index of L/K. Then

$$v_{\mathcal{K}}(L^{\times}) = \frac{1}{e_{L/\mathcal{K}}} \cdot \mathbb{Z}.$$

Say the extension L/K is unramified if $e_{L/K} = 1$; say L/K is totally ramified if $e_{L/K} = [L : K]$.

Local class field theory

Let K^{sep}/K be a separable closure of K and let K^{ab}/K be the largest subextension of K^{sep}/K which is Galois with abelian Galois group.

Then there is a continuous one-to-one homomorphism

$$\omega_{K}: K^{\times} \longrightarrow \operatorname{Gal}(K^{ab}/K)$$

with dense image, known as the reciprocity map.

Let L/K be a finite subextension of K^{ab}/K . Then ω_K induces an isomorphism

$$\omega_{L/K}: K^{\times}/\mathsf{N}_{L/K}(L^{\times}) \longrightarrow \mathsf{Gal}(L/K).$$

Furthermore, $L/K \mapsto N_{L/K}(L^{\times})$ gives a one-to-one correspondence between finite subextensions L/K of K^{ab}/K and closed subgroups of K^{\times} with finite index.

Filtrations and class field theory

 K^{\times} has a natural filtration by closed subgroups

$$\mathcal{K}^{\times} \supset \mathcal{O}_{\mathcal{K}}^{\times} \supset \mathcal{U}_{\mathcal{K}}^{(1)} \supset \mathcal{U}_{\mathcal{K}}^{(2)} \supset \cdots,$$

where $U_{K}^{(n)} = 1 + \mathcal{P}_{K}^{n}$. For notational convenience we set $U_{K}^{(0)} = \mathcal{O}_{K}^{\times}$. Let L/K be a finite subextension of K^{ab}/K and set G = Gal(L/K). For $n \geq 0$ let $G^{(n)} = \omega_{L/K}(U_{K}^{(n)})$. Then we get a filtration

$$G \supset G^{(0)} \supset G^{(1)} \supset G^{(2)} \supset \cdots$$

of G which coincides with the "upper ramification filtration".

What this means is the following: Let $\sigma \in G^{(0)}$ with $\sigma \neq id_L$, and let *n* be maximum such that $\sigma \in G^{(n)}$. If *n* is small then $\sigma(\pi_L)$ is far from π_L , while if *n* is large then $\sigma(\pi_L)$ is close to π_L .

Witt's theorem

Let K be a local field of characteristic p.

Theorem (Witt [Wi36])

Let G be a finite p-group and let $N \trianglelefteq G$. Set $\overline{G} = G/N$ and let L/K be a \overline{G} -extension. Then there exists an extension M/L such that M/K is Galois and there is an isomorphism of exact sequences

$$1 \longrightarrow Gal(M/L) \longrightarrow Gal(M/K) \longrightarrow Gal(L/K) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow N \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$$

Let K[p]/K be the compositum of all the finite Galois subextensions of $Gal(K^{sep}/K)$ whose Galois groups are *p*-groups. Then K[p]/K is the largest Galois subextension of K^{sep}/K whose Galois group is a pro-*p* group.

Corollary

Gal(K[p]/K) is a free pro-p group.

A subextension of K[p]/K

Let K(p)/K be the largest Galois subextension of K[p]/K such that

- Gal(K(p)/K) has nilpotence class < p.
- Gal(K(p)/K) has exponent p.

Then Gal(K(p)/K) is free in the category of pro-*p* groups with nilpotence class < p and exponent dividing *p*.

In [Ab95] and [Ab21] Abrashkin gave explicit descriptions of the ramification filtration of Gal(K(p)/K).

Higher ramification theory

Let K be a local field and let L/K be a finite Galois subextension of K^{sep}/K . Let G = Gal(L/K), let L_0/K be the maximal unramified subextension of L/K, and set $G_0 = \text{Gal}(L/L_0)$. For nonnegative real v define

$$G_{\mathsf{v}} = \{ \sigma \in G_0 : \mathsf{v}_{\mathsf{L}}(\sigma(\pi_{\mathsf{L}}) - \pi_{\mathsf{L}}) \geq \mathsf{v} + 1 \}.$$

Say G_v is the vth lower ramification subgroup of G.

We have the following:

- $G_v \leq G$.
- If $0 \le w \le v$ then $G_v \le G_w$.
- $G_v = {id_L}$ for all sufficiently large v.
- Let M/K be a subextension of L/K and set H = Gal(L/M). Then $H_v = H \cap G_v$.

Say $\ell \ge 0$ is a lower ramification break of L/K if $G_{\ell+\epsilon} \lneq G_{\ell}$ for all $\epsilon > 0$. This holds if and only if there is $\sigma \in G$ such that $v_L(\sigma(\pi_L) - \pi_L) = \ell + 1$.

The upper numbering for ramification groups

Define the Hasse-Herbrand function $\phi_{L/K}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ by

$$\phi_{L/K}(x) = \frac{1}{[L:L_0]} \int_0^x |G_t| dt.$$

Then $\phi_{L/K}$ is a bijection, so we can define $\psi_{L/K} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ by $\psi_{L/K} = \phi_{L/K}^{-1}$.

For $y \ge 0$ set $G^y = G_{\psi_{L/K}(y)}$. Say G^y is the yth upper ramification subgroup of G.

Say $u \ge 0$ is an upper ramification break of L/K if $G^{u+\epsilon} \lneq G^u$ for all $\epsilon > 0$. This holds if and only if $\psi_{L/K}(u)$ is a lower ramification break of L/K.

The upper numbering and quotients of Galois groups

Let M/K be a Galois subextension of L/K and set H = Gal(L/M); then $\text{Gal}(M/K) \cong G/H$. We have the following:

• $\phi_{L/K} = \phi_{M/K} \circ \phi_{L/M}$

•
$$\psi_{L/K} = \psi_{L/M} \circ \psi_{M/K}$$

•
$$(G/H)^y = G^y H/H^2$$

Hence the upper numbering on ramification subgroups is compatible with quotient groups and subextensions. In particular, if u is an upper ramification break of M/K then u is also an upper ramification break of L/K.

Let F/K be an infinite Galois subextension of K^{sep}/K . Then there are finite Galois subextensions F_n/K of F/K such that $F_1 \subset F_2 \subset \cdots$ and $F = \bigcup_{n \ge 1} F_n$.

Set G = Gal(F/K) and $H(n) = \text{Gal}(F/F_n)$ for $n \ge 1$. We can define an upper ramification filtration on G by setting

$$G^{y} = \lim_{\longleftarrow} (G/H(n))^{y}$$

for $y \ge 0$.

An example

Let $K = \mathbb{Q}_2(\zeta_4)$; then $\pi_K = \zeta_4 - 1$ is a uniformizer for K. Let $\pi_L = \pi_K^{1/4}$ and set $L = K(\pi_L)$. Then π_L is a uniformizer for L.

L/K is a cyclic extension of degree 4, with ${\sf Gal}(L/K)=\langle\sigma
angle$ satisfying

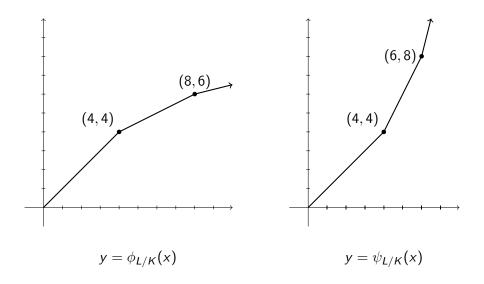
$$\begin{aligned} \sigma(\pi_L) &= \zeta_4 \pi_L = (1 + \pi_K) \pi_L = \pi_L (1 + \pi_L^4) \\ \sigma^2(\pi_L) &= (1 + \pi_K)^2 \pi_L = \pi_L (1 + \pi_L^8 + 2\pi_L^4) \\ \sigma^3(\pi_L) &= (1 + \pi_K)^3 \pi_L = \pi_L (1 + 3\pi_L^4 + 3\pi_L^8 + \pi_L^{12}). \end{aligned}$$

Hence $v_L(\sigma(\pi_L) - \pi_L) = v_L(\sigma^3(\pi_L) - \pi_L) = 5$ and $v_L(\sigma^2(\pi_L) - \pi_L) = 9$. Therefore

$$G_{x} = \begin{cases} \langle \sigma \rangle & (0 \le x \le 4) \\ \langle \sigma^{2} \rangle & (4 < x \le 8) \\ \{ \mathsf{id}_{L} \} & (8 < x). \end{cases} \qquad G^{y} = \begin{cases} \langle \sigma \rangle & (0 \le x \le 4) \\ \langle \sigma^{2} \rangle & (4 < x \le 6) \\ \{ \mathsf{id}_{L} \} & (6 < x). \end{cases}$$

Thus L/K has lower ramification breaks 4, 8, and upper breaks 4, 6.

Hasse-Herbrand functions for L/K



Artin-Schreier extensions

Let K = k((t)) be a local field of characteristic p, and let $r \in K$ satisfy $v_K(r) = -b < 0$ with $p \nmid b$.

Let $\alpha \in K^{sep}$ be a root of $g(X) = X^p - X - r$ and set $L = K(\alpha)$. Then by Artin-Schreier theory L/K is a cyclic extension of degree p, and there is a generator σ for Gal(L/K) such that $\sigma(\alpha) = \alpha + 1$.

Since $pv_L(\alpha) = v_L(\alpha^p) = v_L(r)$ the extension L/K is totally ramified. Since $v_L(\alpha) = -b$ and $p \nmid b$ it follows that b is the unique lower ramification break of L/K. Hence b is also the unique upper ramification break of L/K.

If $v_K(r) < 0$ but $p | v_K(r)$ then $X^p - X - r$ may or may not be irreducible. Suppose $X^p - X - r$ is irreducible and let L be generated over K by a root of $X^p - X - r$. Then the method described above is not sufficient to determine the ramification break u of L/K, but we do have $u < -v_K(r)$.

Filtered unipotent groups over \mathbb{F}_p

Let $\mathcal G$ be an algebraic group defined over $\mathbb F_p.$ Assume further that there are polynomials

$$D_i \in \mathbb{F}_p[X_1,\ldots,X_{i-1},Y_1,\ldots,Y_{i-1}]$$

such that the group operation is given by

$$\vec{X} * \vec{Y} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} * \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} X_1 + Y_1 \\ X_2 + Y_2 + D_2 \\ \vdots \\ X_n + Y_n + D_n \end{bmatrix}$$

We say that \mathcal{G} is a *filtered unipotent group* over \mathbb{F}_p .

Let $\vec{\beta} \in \mathcal{G}(K) \cong K^n$. We wish to consider the system of equations $\phi(\vec{X}) = \vec{\beta} * \vec{X}$, where ϕ acts as the *p*-Frobenius on coordinates.

Extensions associated to algebraic groups

Suppose $\vec{x} \in \mathcal{G}(K^{sep}) \cong (K^{sep})^n$ is a solution to $\phi(\vec{X}) = \vec{\beta} * \vec{X}$. Then $x_1^p - x_1 = \beta_1$, and for $2 \le i \le n$ we have $x_i^p - x_i = \beta_i + d_i$, where

$$d_i = D_i(\beta_1,\ldots,\beta_{i-1},x_1,\ldots,x_{i-1}).$$

It follows that the system $\phi(\vec{X}) = \vec{\beta} * \vec{X}$ has p^n distinct solutions in $(K^{sep})^n$. Set $L = K(x_1, \ldots, x_n)$. Then for $\vec{c} \in \mathcal{G}(\mathbb{F}_p)$ we have

$$\phi(ec{x}*ec{c})=\phi(ec{x})*\phi(ec{c})=(ec{eta}*ec{x})*ec{c}=ec{eta}*(ec{x}*ec{c}).$$

Hence $\vec{x} * \vec{c}$ is also a solution to $\phi(\vec{X}) = \vec{\beta} * \vec{X}$. Since $|\mathcal{G}(\mathbb{F}_p)| = p^n$ the p^n distinct solutions to $\phi(\vec{X}) = \vec{\beta} * \vec{X}$ are given by $\{\vec{x} * \vec{c} : \vec{c} \in \mathcal{G}(\mathbb{F}_p)\}$. Since $\vec{x} * \vec{c} \in \mathcal{G}(L)$ it follows that L/K is Galois.

For $\sigma \in \text{Gal}(L/K)$ let \vec{c}_{σ} be the unique element of $\mathcal{G}(\mathbb{F}_p)$ such that $\sigma(\vec{x}) = \vec{x} * \vec{c}_{\sigma}$. The map $\sigma \mapsto \vec{c}_{\sigma}$ gives a one-to-one homomorphism from Gal(L/K) into $\mathcal{G}(\mathbb{F}_p)$.

Therefore \vec{x} determines a homomorphism $\theta_{\vec{x}} : \operatorname{Gal}(K^{sep}/K) \to \mathcal{G}(\mathbb{F}_p)$, with $\theta_{\vec{x}}(\sigma) = \vec{c}_{\sigma}$.

Classifying Galois representations

Let \vec{x} and \vec{y} be solutions to $\phi(\vec{X}) = \vec{\beta} * \vec{X}$. Then there is $\vec{d} \in \mathcal{G}(\mathbb{F}_p)$ such that $\vec{y} = \vec{x} * \vec{d}$. Hence for $\sigma \in \text{Gal}(K^{\text{sep}}/K)$ we have

$$ec{y}* heta_{ec{y}}(\sigma)=\sigma(ec{y})=\sigma(ec{x}*ec{d})=ec{x}* heta_{ec{x}}(\sigma)*ec{d}=ec{y}*ec{d}^{-1}* heta_{ec{x}}(\sigma)*ec{d}.$$

Therefore $\theta_{\vec{y}}(\sigma) = \vec{d}^{-1} * \theta_{\vec{x}}(\sigma) * \vec{d}$. It follows that $\vec{\beta}$ determines a conjugacy class of homomorphisms from $\text{Gal}(K^{sep}/K)$ to $\mathcal{G}(\mathbb{F}_p)$.

Let $\vec{\alpha} \in \mathcal{G}(K)$ and set $\vec{\beta}' = \phi(\vec{\alpha}) * \vec{\beta} * \vec{\alpha}^{-1}$. If \vec{x} is a solution to $\phi(\vec{X}) = \vec{\beta} * \vec{X}$ then $\vec{z} := \vec{\alpha} * \vec{x}$ is a solution to $\phi(\vec{X}) = \vec{\beta}' * \vec{X}$. It follows that $\theta_{\vec{z}} = \theta_{\vec{x}}$.

Define an equivalence relation on $\mathcal{G}(K)$ by $\vec{\beta} \sim \vec{\beta'}$ if there is $\vec{\alpha} \in \mathcal{G}(K)$ such that $\vec{\beta'} = \phi(\vec{\alpha}) * \vec{\beta} * \vec{\alpha}^{-1}$. Then we have

Theorem (Galois classification theorem)

Let \mathcal{G} be a filtered unipotent group over \mathbb{F}_p . Then there is a one-to-one correspondence between equivalence classes $[\vec{\beta}]$ of elements of $\mathcal{G}(K)$ and conjugacy classes of homomorphisms from $Gal(K^{sep}/K)$ to $\mathcal{G}(\mathbb{F}_p)$, which maps $[\vec{\beta}]$ to the conjugacy class of $\theta_{\vec{x}}$ for any \vec{x} such that $\phi(\vec{x}) = \vec{\beta} * \vec{x}$.

Witt vectors

Let W_n denote the *p*-Witt vectors of length *n*. Then the Witt vector addition operation \oplus makes W_n an *n*-dimensional filtered unipotent group over \mathbb{F}_p .

Let $\vec{\beta}, \vec{\beta}' \in W_n(K)$. Then $\vec{\beta} \sim \vec{\beta}'$ if and only if there is $\vec{\alpha} \in W_n(K)$ such that $\vec{\beta}' = \phi(\vec{\alpha}) \oplus \vec{\beta} \odot \vec{\alpha}$.

Thus there is a one-to-one correspondence between equivalence classes $[\vec{\beta}]$ with $\vec{\beta} \in W_n(K)$ and homomorphisms

$$\theta : \operatorname{Gal}(K^{sep}/K) \longrightarrow W_n(\mathbb{F}_p) \cong \mathbb{Z}/p^n\mathbb{Z}.$$

In particular, by taking n = 1 we recover Artin-Schreier theory.

The Heisenberg group

Let p > 2. The Heisenberg group G is isomorphic to $\mathcal{G}(\mathbb{F}_p)$, where \mathcal{G} is the algebraic group over \mathbb{F}_p whose K^{sep} -points are

$$\mathcal{G}(\mathcal{K}^{sep}) = \left\{ egin{bmatrix} 1 & c_1 & c_3 \ 0 & 1 & c_2 \ 0 & 0 & 1 \end{bmatrix} : c_i \in \mathcal{K}^{sep}
ight\},$$

with the operation of matrix multiplication. Then \mathcal{G} is a 3-dimensional filtered unipotent group over \mathbb{F}_p .

The Heisenberg group ...

Let
$$\vec{\beta} = (\beta_1, \beta_2, \beta_3) \in \mathcal{G}(\mathcal{K})$$
 and let \vec{x} satisfy $\phi(\vec{x}) = \vec{\beta} * \vec{x}$. Since

$$\begin{bmatrix} 1 & \beta_1 & \beta_3 \\ 0 & 1 & \beta_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_1 + x_1 & \beta_3 + x_3 + \beta_1 x_2 \\ 0 & 1 & \beta_2 + x_2 \\ 0 & 0 & 1 \end{bmatrix},$$

we get

$$\vec{\beta} * \vec{x} = (\beta_1 + x_1, \beta_2 + x_2, \beta_3 + x_3 + \beta_1 x_2).$$

It follows that $\phi(\vec{x}) = \vec{\beta} * \vec{x}$ if and only if the entries of $\vec{x} = (x_1, x_2, x_3)$ satisfy

$$x_1^p - x_1 = \beta_1 x_2^p - x_2 = \beta_2 x_3^p - x_3 = \beta_3 + \beta_1 x_2.$$

Filtered pro-unipotent groups

A filtered pro-unipotent group $\mathcal G$ over $\mathbb F_p$ is given by a sequence of polynomials

$$D_i \in \mathbb{F}_p[X_1,\ldots,X_{i-1},Y_1,\ldots,Y_{i-1}]$$

such that for each $n \ge 1$

$$\vec{X} *_{n} \vec{Y} = \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{bmatrix} *_{n} \begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{bmatrix} = \begin{bmatrix} X_{1} + Y_{1} \\ X_{2} + Y_{2} + D_{2} \\ \vdots \\ X_{n} + Y_{n} + D_{n} \end{bmatrix}$$

defines a filtered unipotent group over \mathbb{F}_p .

The operations $*_n$ for $n \ge 1$ combine to give a group operation on \mathcal{G} which we denote by *.

Filtered pro-unipotent groups and Galois representations

Let $(\mathcal{G}, *)$ be a filtered pro-unipotent group and let $\vec{\beta} = (\beta_1, \beta_2, ...) \in \mathcal{G}(K)$. Then there exists $\vec{x} = (x_1, x_2, ...) \in \mathcal{G}(K^{sep})$ such that $\phi(\vec{x}) = \vec{\beta} * \vec{x}$. Set $L = K(x_1, x_2, ...)$; then L is independent of the choice of \vec{x} .

For $\sigma \in \text{Gal}(L/K)$ there is unique $\vec{c}_{\sigma} \in \mathcal{G}(\mathbb{F}_p)$ such that $\sigma(\vec{x}) = \vec{x} * \vec{c}_{\sigma}$. The map $\theta_{\vec{x}} : \text{Gal}(K^{sep}/K) \to \mathcal{G}(\mathbb{F}_p)$ defined by $\theta_{\vec{x}}(\sigma) = \vec{c}_{\sigma}$ induces a one-to-one homomorphism from Gal(L/K) into $\mathcal{G}(\mathbb{F}_p)$.

As in the finite-dimensional setting, $\vec{\beta}$ determines a conjugacy class of homomorphisms from $\text{Gal}(K^{sep}/K)$ to $\mathcal{G}(\mathbb{F}_p)$.

Define an equivalence relation on $\mathcal{G}(\mathcal{K})$ by $\vec{\beta} \sim \vec{\beta}'$ if there is $\vec{\alpha} \in \mathcal{G}(\mathcal{K})$ such that $\vec{\beta}' = \phi(\vec{\alpha}) * \vec{\beta} * \vec{\alpha}^{-1}$.

The Galois classification theorem applies here: There is a one-to-one correspondence between equivalence classes $[\vec{\beta}]$ of elements of $\mathcal{G}(K)$ and conjugacy classes of homomorphisms from $\operatorname{Gal}(K^{sep}/K)$ to $\mathcal{G}(\mathbb{F}_p)$ which maps $[\vec{\beta}]$ to the conjugacy class of $\theta_{\vec{x}}$ for any \vec{x} such that $\phi(\vec{x}) = \vec{\beta} * \vec{x}$.

Let W denote the full ring of p-Witt vectors. Then (W, \oplus) is a filtered pro-unipotent group over \mathbb{F}_p .

Let $\vec{\beta}, \vec{\beta}' \in W(K)$. Then $\vec{\beta} \sim \vec{\beta}'$ if and only if there is $\vec{\alpha} \in W(K)$ such that $\vec{\beta}' = \phi(\vec{\alpha}) \oplus \vec{\beta} \odot \vec{\alpha}$.

Thus there is a one-to-one correspondence between equivalence classes $[\vec{\beta}]$, with $\vec{\beta} \in W(K)$, and homomorphisms

$$\theta: \operatorname{Gal}(K^{\operatorname{sep}}/K) \longrightarrow W(\mathbb{F}_p) \cong \mathbb{Z}_p.$$

Lie algebras and *p*-groups

Let \mathcal{L} be a Lie algebra over \mathbb{F}_p which is nilpotent of class c < p.

The Baker-Campbell-Hausdorff formula defines a group operation on \mathcal{L} . This operation is expressed in terms of the Lie algebra operations + and [,]:

$$x * y = x + y + \frac{1}{2} \cdot [x, y] + \frac{1}{12} \cdot ([x, [x, y]] - [y, [x, y]]) + \cdots$$

Since \mathcal{L} is nilpotent of class c < p, the Baker-Campbell-Hausdorff formula for \mathcal{L} has only finitely many terms. The coefficients are rational numbers whose denominators are not divisible by p.

The operation * makes \mathcal{L} a group with exponent p and nilpotence class c.

Let $1 \leq d < p$. This construction defines an equivalence between the category of Lie algebras over \mathbb{F}_p with nilpotence class $\leq d$ and the category of groups G with nilpotence class $\leq d$ such that $g^p = 1$ for all $g \in G$.

Lie algebras and filtered (pro-)unipotent groups

Let \mathcal{L} be a finite Lie algebra over \mathbb{F}_p with nilpotence class c < p. Then $\mathcal{L} \otimes_{\mathbb{F}_p} \mathcal{K}^{sep}$ is a Lie algebra over \mathcal{K}^{sep} , also with nilpotence class c.

Let * be the operation on $\mathcal{L} \otimes_{\mathbb{F}_p} \mathcal{K}^{sep}$ defined by the Baker-Campbell-Hausdorff formula and set $\mathcal{G} = (\mathcal{L} \otimes_{\mathbb{F}_p} \mathcal{K}^{sep}, *)$. Then $\mathcal{G}(\mathbb{F}_p) \cong (\mathcal{L}, *)$.

Since $*: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ is is a polynomial map, by choosing an appropriate \mathbb{F}_p -basis for \mathcal{L} we can make \mathcal{G} a filtered unipotent group.

Now suppose that \mathcal{L} is an inverse limit of a sequence $\mathcal{L}_1, \mathcal{L}_2, \ldots$ of Lie algebras over \mathbb{F}_p such that $\dim_{\mathbb{F}_p}(\mathcal{L}_n) = n$. In this case, the choice of an appropriate topological \mathbb{F}_p -basis for \mathcal{L} makes \mathcal{G} a filtered unipotent group, with $\mathcal{G}(\mathbb{F}_p) \cong (\mathcal{L}, *)$.

In either case we can use the Galois classification theorem to determine the conjugacy classes of Galois representations

$$\theta : \operatorname{Gal}(K^{sep}/K) \longrightarrow \mathcal{G}(\mathbb{F}_p).$$

in terms of equivalence classes of elements of $\mathcal{G}(K)$.

References

[Ab95] V. A. Abrashkin, A ramification filtration of the Galois group of a local field, Tr. St-Peterbg. Mat. Obshch., vol. 3, St. Petersburg State University Publishing House, St. Petersburg 1995, 47–127; English transl. in Proceedings of the St. Petersburg Mathematical Society, vol. III, Amer. Math. Soc. Transl. Ser. 2, vol. 166, Amer. Math. Soc., Providence, RI 1995, pp. 35–100.

[Ab21] V. A. Abrashkin, Ramification filtration via deformations, Mat. Sb. **212** (2021), 3–37; translation in Sb. Math. **212** (2021), 135–169.

[Wi36] E. Witt, Konstruktion von galoisschen Körpen der Charakteristik p zu vorgegebener Gruppe der Ordnung p^{f} , J. Reine Angew. Math. **174** (1936), 237–245.